Part Number Hot Search : 
Z4B62 GRM188R TAA8155 330XM 7808CT T2322BG NTXV1 KA2811
Product Description
Full Text Search
 

To Download AP93T08GP-HF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  AP93T08GP-HF advanced power n-channel enhancement mode electronics corp. power mosfet simple drive requirement bv dss 80v lower on-resistance r ds(on) 4.6m fast switching characteristic i d 140a rohs compliant & halogen-free description absolute maximum ratings symbol units v ds v v gs v i d @t c =25 a i d @t c =25 a i d @t c =100 a i dm a p d @t c =25 w p d @t a =25 w t stg t j symbol value units rthj-c maximum thermal resistance, junction-case 0.8 /w rthj-a maixmum thermal resistance, junction-ambient 62 /w data and specifications subject to change without notice thermal data parameter storage temperature range total power dissipation 156 -55 to 150 operating junction temperature range continuous drain current, v gs @ 10v 3 80 pulsed drain current 1 320 gate-source voltage + 20 continuous drain current, v gs @ 10v 3 80 continuous drain current (chip) parameter rating drain-source voltage 80 halogen-free product -55 to 150 140 total power dissipation 2 201304171 1 g d s a p93t08 series are from advanced power innovated design and silicon process technology to achieve the lowest possible on- resistance and fast switching performance. it provides the designe r with an extreme efficient device for use in a wide range of powe r applications. the to-220 package is widely preferred for all commercial-industrial through hole applications. the low thermal resistance and lo w package cost contribute to the worldwide popular package. g d s to-220(p)
electrical characteristics@t j =25 o c(unless otherwise specified) symbol parameter test conditions min. typ. max. units bv dss drain-source breakdown voltage v gs =0v, i d =250ua 80 - - v r ds(on) static drain-source on-resistance 2 v gs =10v, i d =40a - - 4.6 m v gs(th) gate threshold voltage v ds =v gs , i d =250ua 2 - 5 v g fs forward transconductance v ds =10v, i d =40a - 60 - s i dss drain-source leakage current v ds =64v, v gs =0v - - 25 ua i gss gate-source leakage v gs = + 20v, v ds =0v - - + 100 na q g total gate charge i d =40a - 68 109 nc q gs gate-source charge v ds =64v - 23 - nc q gd gate-drain ("miller") charge v gs =10v - 24 - nc t d(on) turn-on delay time v ds =40v - 23 - ns t r rise time i d =40a - 95 - ns t d(off) turn-off delay time r g =3.3 -40- ns t f fall time v gs =10v - 60 - ns c iss input capacitance v gs =0v - 4900 7840 pf c oss output capacitance v ds =25v - 1770 - pf c rss reverse transfer capacitance f=1.0mhz - 1580 - pf r g gate resistance f=1.0mhz - 3 6 source-drain diode symbol parameter test conditions min. typ. max. units v sd forward on voltage 2 i s =40a, v gs =0v - - 1.3 v t rr reverse recovery time i s =10a, v gs =0v - 70 - ns q rr reverse recovery charge di/dt=100a/s - 120 - nc notes: 1.pulse width limited by max. junction temperature. 2.pulse test 3.package limitation current is 80a. this product is sensitive to electrostatic discharge, please handle with caution. use of this product as a critical component in life support or other similar systems is not authorized. apec does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. apec reserves the right to make changes without further notice to any products herein to improve reliability, function or design. 2 AP93T08GP-HF
a p93t08gp-hf fig 1. typical output characteristics fig 2. typical output characteristics fig 3. normalized bv dss v.s. junction fig 4. normalized on-resistance temperature v.s. junction temperature fig 5. forward characteristic of fig 6. gate threshold voltage v.s. reverse diode junction temperature 3 0 80 160 240 320 0 8 16 24 32 v ds , drain-to-source voltage (v) i d , drain current (a) t c =25 o c 10v 9.0v 8.0v 7.0v v gs =6.0v 0 40 80 120 160 200 0481216 v ds , drain-to-source voltage (v) i d , drain current (a) t c = 150 o c 10v 9.0v 8.0v 7.0v v gs =6.0v 0.4 0.8 1.2 1.6 2.0 2.4 -50 0 50 100 150 t j , junction temperature ( o c) normalized r ds(on) i d =40a v g =10v 0 10 20 30 40 0 0.2 0.4 0.6 0.8 1 1.2 v sd , source-to-drain voltage (v) i s (a) t j =25 o c t j =150 o c 0.0 0.4 0.8 1.2 1.6 -50 0 50 100 150 t j , junction temperature ( o c) normalized v gs(th) i d =1ma 0.8 0.9 1 1.1 1.2 -50 0 50 100 150 t j , junction temperature ( o c) normalized bv dss i d =1ma
AP93T08GP-HF fig 7. gate charge characteristics fig 8. typical capacitance characteristics fig 9. maximum safe operating area fig 10. effective transient thermal impedance fig 11. maximum continuous drain current fig 12. gate charge waveform v.s. case temperature 4 0 2 4 6 8 10 12 0 20406080 q g , total gate charge (nc) v gs , gate to source voltage (v) i d = 40a v ds = 64v 0 2000 4000 6000 8000 1 5 9 1317212529 v ds , drain-to-source voltage (v) c (pf) f =1.0mh z c iss c oss c rss 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 10 t , pulse width (s) normalized thermal response (r thjc ) p dm duty factor = t/t peak t j = p dm x r thjc + t c t t 0.02 0.01 0.05 0.1 0.2 duty factor=0.5 single pulse 0.1 1 10 100 1000 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) i d (a) t c =25 o c s in g le puls e 100us 1ms 10ms 100ms dc operation in this area limited by r ds(on) 0 40 80 120 160 25 50 75 100 125 150 t c , case temperature ( o c ) i d , drain current (a) limited by package q v g 10v q gs q gd q g charge


▲Up To Search▲   

 
Price & Availability of AP93T08GP-HF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X